Shuffle Exchange Networks and Achromatic Labeling

Antony Kishore, Albert William
Department of Mathematics, Loyola College, Chennai, India
Email: kishorepantony@gmail.com

Abstract

Design of interconnection networks is an important integral part of the parallel processing or distributed systems. There are a large number of topological choices for interconnection networks. Among several choices, the Shuffle Exchange Network is one of the most popular versatile and efficient topological structures of interconnection networks. In this paper, we have given a new method of drawing shuffle exchange network for any dimension. This has enabled us to investigate some of the topological properties of shuffleexchange network. Also we give an approximation algorithm for achromatic number of shuffle-exchange network.

Keywords- Interconnection networks, Shuffle Exchange Network, Achromatic Labeling.

I. INTRODUCTION

An interconnection network consists of a set of processors, each with a local memory, and a set of bidirectional links that serve for the exchange of data between processors. A convenient representation of an interconnection network is by an undirected (in some cases directed) graph $\quad G=(V, E)$ where each processor is a vertex in V and two vertices are connected by an edge if and only if there is a direct (bidirectional for undirected and unidirectional for directed graphs) communication link between processors. We will use the term interconnection network and graph interchangeably.

A. The Shuffle Exchange Network

Definition -Let Q_{n} denote an n-dimensional hypercube. The n dimensional shuffle - exchange network, denoted by $S E(n)$, has vertex set $V=V\left(Q_{n}\right)$, and two vertices $x=x_{1} x_{2} \ldots x_{n}$ and $y=$ $y_{1} y_{2} \ldots y_{n}$ are adjacent if and only if either
(i) x and y differ in precisely the $n^{\text {th }}$ bit, or
(ii) x is a left or right cyclic shift of y.

The edge defined by the condition (i) is called an exchange edge and (ii) is called a shuffle edge. The condition (ii) means that either $y_{1} y_{2} \ldots y_{n}=x_{2} x_{3} \ldots x_{n} x_{1}$ or $y_{1} y_{2} \ldots y_{n}=x_{n} x_{1} x_{2} \ldots x_{n-2} x_{n-1}$.

As an example, the 8 -node shuffle exchange graph is given in Figure 1. The shuffle edges are drawn with solid lines while the exchange edges are drawn with dashed lines [6].For higher dimension, it is generally understood that drawing shuffle-exchange network is quite challenging.

Figure 1 The 8 - node Shuffle Exchange Network

II. NEW REPRESENTATION OF THE SHUFFLE EXCHANGE NETWORK

Definition-Let $X=\left\{2^{0}, 2^{1}, \ldots, 2^{n-1}\right\}$ and let $P(X)$ denote the power set of X. We construct a graph G^{*} with vertex set $P(X)$ where
(i) Two nodes S and S^{\prime} are adjacent if and only if $S \Delta S^{\prime}=\left\{2^{0}\right\}$
(ii) If $|S|=\left|S^{\prime}\right|=k$, where $S=\left\{2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\}$ and $S^{\prime}=$ $\left\{2^{y_{1}}, 2^{y_{2}}, \ldots, 2^{y_{k}}\right\}$, then S and S^{\prime} are adjacent if and only if $y_{i}=\left(x_{i}+1\right) \bmod n$ for all $1 \leq i \leq k$. See Figure 2.

Figure 2 New Drawing of the Shuffle-Exchange Network
Theorem 1 The two definitions of Shuffle-Exchange network of dimension n are equivalent. In other words, the graph G^{*} constructed in definition 2 is isomorphic to the graph G given in definition 1.

Proof. Let G and G^{*} be the graphs defined by definition 1 and definition 2 respectively. First we associate with each binary string of length n, a set S in $P(X)$..

Let $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right), u_{i} \in\{0,1\}$ be an arbitrary string. If $u_{i}=$ 1 , then let $2^{n-i} \in S$. If $u_{i}=0$, then $2^{n-i} \notin S$. If $u_{i}=0$ for every i, then $S=\varnothing$. For example, the string 000 is associated with \varnothing, 001 is associated with $\left\{2^{0}\right\}, 010$ with $\left\{2^{1}\right\}, 100$ with $\left\{2^{2}\right\}, 011$ with $\left\{2^{0}, 2^{1}\right\}, 101$ with $\left\{2^{0}, 2^{2}\right\}, 110$ with $\left\{2^{1}, 2^{2}\right\}$, and 111 with $\left\{2^{0}, 2^{1}, 2^{2}\right\}$.

We have redrawn the Shuffle-Exchange network considering the power set of $X=\left\{2^{0}, 2^{1}, \ldots, 2^{n-1}\right\}$ as vertices. This has enabled us to present a good drawing of the Shuffle-Exchange network for any dimension.

Define $f: V(G) \rightarrow V\left(G^{*}\right)$ by $f(u)=f\left(u_{1}, u_{2}, \ldots, u_{n}\right)=S$ where $2^{n-i} \in S$ if $u_{i}=1,2^{n-i} \notin S$ if $u_{i}=0,1 \leq i \leq n$.
Clearly f is well-defined, for, $u=v \Rightarrow u_{i}=v_{i}, \forall i=1,2, \ldots, n$

$$
\begin{aligned}
& \Rightarrow f(u)=f(v) \\
& \Rightarrow S=S^{\prime}
\end{aligned}
$$

f is one - one: Let $S, S^{\prime} \in V\left(G^{*}\right)$ such that $S=S^{\prime}=$ $\left\{2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\} \Rightarrow f(u)=f\left(u^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow u_{i}=1=u_{i}^{\prime}, 1 \leq i \leq k \\
& \Rightarrow u=u^{\prime} .
\end{aligned}
$$

f is onto: For every $S \in V\left(G^{*}\right)$, there exists $u=\left(u_{1}, u_{2}, \ldots\right.$, $\left.u_{n}\right) \in V(G)$ such that $u_{i}=1$ if $2^{n-i} \in S$ and $u_{i}=0$ if $2^{n-i} \notin S$, $1 \leq i \leq n$ satisfying $f(u)=S$.
f preserves adjacency: Let $e=u v$ be an exchange edge in G. To prove, $f(e)=S S^{\prime}$ is an exchange edge in G^{*}.
By definition, u and v differ in exactly the $n^{\text {th }}$ bit. That is, if u_{n} $=0$, then $v_{n}=1$ and vice versa $\Rightarrow 2^{0} \in S$ and $2^{0} \notin S^{\prime}$, that is, if S $=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{n-1}\right\}$, then $S^{\prime}=\left\{2^{1}, 2^{2}, \ldots, 2^{n-1}\right\}$.

Hence $S \Delta S^{\prime}=\left\{2^{0}\right\} \Rightarrow S S^{\prime}$ is an exchange edge in G^{*}.
Conversely, Let $S S^{\prime}$ be an exchange edge in G^{*}. In other words, if $S=\left\{2^{0}, 2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\}$, then $S^{\prime}=\left\{2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\}$.
This implies $u_{n-x_{1}}=u_{n-x_{2}}=\ldots=u_{n-x_{k}}=1=v_{n-x_{1}}=v_{n-x_{2}}=\ldots$ $=v_{n-x_{k}}$, the rest of u and v are zero with $u_{n}=1$ and $v_{n}=0$.
Hence u and v differ in exactly the $n^{\text {th }}$ bit.
$\Rightarrow u v$ is an exchange edge in G.
Let $e=u v$ be a shuffle edge in G. Then $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ is a left (or a right) cyclic shift of $v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, that is, $v_{0} v_{1}$ $\ldots v_{n-1}=u_{1} u_{2} \ldots u_{n-1} u_{0} \Rightarrow v_{i}=u_{(i+1) \bmod n}$. For every $u_{i}=1$, $0 \leq i \leq n-1$, there exists x_{j} such that $S=\left\{2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\}$ and $f(u)=S$. Since $v_{i}=u_{(i+1) \bmod n}$, there exists $y_{1}, y_{2}, \ldots, y_{k}$ such that $y_{i}=\left(x_{i}+1\right) \bmod n$ for all $1 \leq i \leq k \quad$ and $f(v)=S^{\prime}=\left\{2^{y_{1}}, 2^{y_{2}}, \ldots, 2^{y_{k}}\right\}$.
Hence $f(e)=f(u v)=f(u) f(v)=S S^{\prime}$ is a shuffle edge in G^{*}
Conversely, let $S S^{\prime}$ be a shuffle edge in G^{*}. That is, if $S=$ $\left\{2^{x_{1}}, 2^{x_{2}}, \ldots, 2^{x_{k}}\right\}$, then $S^{\prime}=\left\{2^{y_{1}}, 2^{y_{2}}, \ldots, 2^{y_{k}}\right\}$ such that $y_{i}=\left(x_{i}+\right.$

1) $\bmod n$ for all $1 \leq i \leq k$. This means y_{i} is moved one step forward from the position of x_{i} and if $x_{i}=n-1$, then $y_{i}=0$. There exists $u, v \in G$ such that u is a left cyclic shift of v. Hence $u v$ is a shuffle edge in G.
Thus f preserves adjacency.
Remark 1- We draw this graph excluding the loops and parallel edges so that the graph is simple. See Figure 3.
Theorem 2 Let G be the shuffle-exchange network $\operatorname{SE}(n)$. Then $|V(G)|=2^{n}$ and ${ }_{|E(G)|=}\left\{\begin{array}{lll}3 \times 2^{n-1}-3 & \text { if } & { }^{n} \mathrm{C}_{[n / 2]}- \\ \\ 3 \times 2^{n-1}-2 & \text { otherwise }\end{array}\left|\frac{\mid{ }^{n} \mathrm{C}_{[n / 2]}}{n}\right| \times n=2\right.$.
$\operatorname{SE}(6), \operatorname{SE}(10), \operatorname{SE}(14)$, etc which satisfy the condition ${ }^{n} \mathrm{C}_{\lceil n / 2\rceil}-\left\lfloor\left.\frac{{ }^{n} \mathrm{C}_{\lceil n / 2}}{n} \right\rvert\, \times n=2\right.$ contain a pair of parallel edges in the middle row of vertices. Hence removing a parallel edge reduces the number of edges by one. Hence the result follows.

Figure 3 The 4-dimensional Shuffle Exchange Network.

Dotted lines represent deleted loops and parallel edge

Figure 4 Shuffle-Exchange Network of dimension 4
Definition- The removal of the exchange edges partitions the graph into a set of connected components called necklaces. Each necklace is a ring of nodes connected by shuffle edges. Figure 4 shows shuffle exchange network $\operatorname{SE}(4)$. Figure 5 shows the necklaces of $S E(4)$ after removing all the exchange edges. The nodes $0010,0100,1000$ and 0001 form a 4 -node necklace.

Figure 5 The necklaces of SE(4)
Theorem 3 The diameter of $S E(n)$ is equal to $2 n-1$.

Proof: Obviously $|V(G)|=2^{n}$. Degree of each vertex is 3 . Hence there are 3. 2^{n-1} edges. Since the new drawing of $S E(n)$ does not Proof. The longest path between any two vertices of $S E(n)$ is the contain loops and parallel edges, by removing the loops, the num- path between the pendant vertices at the beginning and the end. ber of edges becomes 3. $2^{n-1}-2$. In particular, the graphs $\operatorname{SE}(4)$, Hence $\operatorname{diam}(S E(n))=2 n-1$. \square

Conjecture $1 \operatorname{SE}(n), n \geq 4$, does not contain a Hamiltonian path. Lemma 1 [4] Let C_{p} denotes a p-cycle. If $\chi\left(C_{p}\right)=n$ and $k \geq 2$, -
Theorem 4 The number of n - node necklaces in $S E(n)$ is then $\chi\left(C_{p+k}\right) \geq n . \square$
$\sum_{r=1}^{n-1}\left\lfloor\frac{{ }^{n} C_{r}}{n}\right\rfloor$.
Proof. The new drawing of $\operatorname{SE}(n)$ shows that the number of vertices are divided into $n+1$ partitions each containing ${ }^{n} C_{r}$

Lemma 2[4] If $\chi\left(C_{p}\right)=n$, then $p \geq \frac{n(n-1)}{2}$. \square
Lemma 3 [4] For $n>2$ and even, let $p=\frac{n^{2}}{2}$. Then $\square \quad{ }_{r}, \chi\left(C_{p}\right)=\chi\left(C_{p+1}\right)=n . \square$ $r=0,1,2, \ldots, n$ vertices. Each partition contains $\left\lfloor\left.\frac{{ }^{n} C_{r}}{n} \right\rvert\,\right.$ number of Lemma 4 [4] For $n \geq 3$ and odd, let $p=\frac{n(n-1)}{2}$. Then n - node necklaces. Thus the number of n - node necklaces in $S E(n)$ is $\sum_{r=1}^{n-1}\left|\frac{{ }^{n} C_{r}}{n}\right|$. \square
In Figure 5, there are three 4 - node necklaces.
A. The Achromatic Labeling
$\chi\left(C_{p}\right)=n$ and $\chi\left(C_{p+1}\right)=n-1 . \square$

Graph labeling enjoys many practical applications as well as theoretical challenges. Besides the classical types of problems, different limitations can also be set on the graph, or on the way a colour is assigned, or even on the colour itself. Scheduling, Register allocation in compilers, Bandwidth allocation, and pattern matching are some of the applications of graph colouring.
Definition-The achromatic number of a graph G, denoted by $\chi(G)$, is the greatest number of colours in a vertex colouring such that for each pair of colours, there is at least one edge whose endpoints have those colours. Such a colouring is called a complete colouring. More precisely, the achromatic number for a graph $G=(V, E)$ is the largest integer m such that there is a parti- there exists positive integers $l_{1}{ }^{\prime}, l_{2}{ }^{\prime}, \ldots, l_{k-1}^{\prime}$ such that tion of V into disjoint independent sets $\left(V_{1}, \ldots, V_{m}\right)$ such that for ${ }_{k-1}$ each pair of distinct sets $V_{i}, V_{j}, V_{i} \cup V_{j}$ is not an independent set $\sum_{i}^{k-1} l_{i}=\sum^{k} l_{i} \quad$ and in G.The achromatic number of a path of length $4, \chi\left(\mathrm{P}_{4}\right)=3$. See
Figure 6. Yannakakis and Gavril proved that determining this $\chi\left(C_{l_{1}} \cup C_{l_{2}} \cup \ldots \cup C_{l_{k}}\right) \leq \chi\left(C_{l_{1}} \cup C_{l_{2}} \cup \ldots \cup C_{l_{k-1}}\right)$. In particuvalue for general graphs is $N P$-complete [10].

Figure 6 Achromatic number of a path of length 4 is 3
lar, if $\sum_{i=1}^{k} l_{i}=p$, then $\chi\left(C_{l_{1}} \cup C_{l_{2}} \cup \ldots \cup C_{l_{k}}\right) \leq \chi\left(C_{p}\right)$, where C_{t} denotes a cycle of length t. \square

Theorem 6 [5] Let $3 \leq l_{1} \leq l_{2} \leq \ldots \leq l_{k}$ be positive integers and let The $N P$-completeness of the achromatic number problem holds $\sum_{i=1}^{k} l_{i}=p$. If $k \leq \sqrt{\frac{p}{2}}$, then $\chi\left(C_{l_{1}} \cup C_{l_{2}} \cup \ldots \cup C_{l_{k}}\right)=\chi\left(C_{p}\right)$.ם
also for some special classes of graphs: bipartite graphs [3], complements of bipartite graphs [8], cographs and interval graphs [1] Theorem 7 [5] Let G be a regular graph of degree m. If G has a and even for trees [7]. For complements of trees, the achromatic and even for trees [7]. For complements of trees, the achromatic
number can be computed in polynomial time [10]. The achromatic complete n-colouring, then $\left\lceil\frac{n-1}{m}|n \leq|V(G)|\right.$.
number of an n-dimensional hypercube graph is known to be proportional to $\sqrt{n 2^{n}}$, but the constant of proportionality is not The following is our result on the achromatic number of $\operatorname{SE}(n)$. known precisely [9].In this section, we give an approximation Theorem 8 An upper bound for the achromatic number of $\operatorname{SE}(n)$ is algorithm to determine the achromatic number of shuffleexchange network.

III. AN APPROXIMATION ALGORITHM FOR THE ACHROMATIC NUMBER OF $S E(N)$

given by $\chi(S E(n)) \leq \frac{1+\sqrt{1+\left(3.2^{n+2}-16\right)}}{2}$.Proof. $S E(n)$ contains $T=\sum_{r=1}^{n-1}\left|\frac{{ }^{n} C_{r}}{n}\right|$ number of n - node necklaces. We know that $\operatorname{SE}(n)$
Some of the basic results on achromatic number, which are in the is a regular graph of degree 3 except the pendant vertices at the literature, are given below.
edges. Then $\operatorname{SE}(n)$ has a complete k - colouring satisfying [9]
$\left\lceil\frac{k-1}{3}\right\rceil k \leq 2^{n}$. That is, $k^{2}-k-3.2^{n} \leq 0 \quad$ which implies [10]
$k \leq \frac{1+\sqrt{1+4.3 .2^{n}}}{2} \leq \frac{1+\sqrt{1+3.2^{n+2}}}{2}$.
Thus $x(\operatorname{SE}(n)) \leq \frac{1+\sqrt{1+\left(3.2^{n+2}-16\right)}}{2}$ which completes the proof. \quad.
We have also derived a lower bound for the achromatic number of $S E(n)$, when n is prime.

Theorem $9 \chi(\operatorname{SE}(n)) \geq\left(\sqrt{2^{n+1}-4}\right)-1$, when n is prime.
Proof. When n is prime, the number of n - node necklaces is given by $T=\sum_{r=1}^{n-1} \frac{{ }^{n} C_{r}}{n}=\frac{1}{n}\left(2^{n}-2\right)$. Let $N=n T$. Let k be an integer such that $N<(k+1)\left(\frac{k}{2}\right)<\frac{(k+1)^{2}}{2}$, which implies $(k+1)^{2}>2 N$.
Therefore $k>-1+\sqrt{2 N}$. In other words, $k>\sqrt{2^{n+1}-4}-1$. Hence the theorem is proved.

From Theorem 8 and Theorem 9, we obtain the following result.
Theorem 10 There exists an $O(1)$ - approximation algorithm to determine the achromatic number of Shuffle-Exchange network $S E(n)$, when n is prime.
Conjecture 2 Theorem 10 holds for $\operatorname{SE}(n)$, for any n. \square

IV. CONCLUSION

In this paper, we give a new method of drawing Shuffle Exchange Network of any dimension. Since the drawing of shuffle exchange network is complicated, many of its properties are hard to understand. The new representation which we have introduced helps us to study some of its properties.An approximation algorithm has been given for achromatic number of hypercubes [9]. In this paper, we have considered this problem for the Shuffle Exchange Network of prime dimension. The conjecture mentioned in this paper and the problem for deBrujin and torus are under investigation.

REFERENCES

[1] H. Bodlaender, "Achromatic number is NP - complete for cographs and interval graphs", Inform. Proc. Lett. 31, pp. 135-138, 1989.
[2] Danut Marcu, "Note on the n - cycles and theirachromatic numbers", Computer Science Journal of Maldova, vol.10, no. 3(30), 2002.
[3] M. Farber, G. Hahn, and P. Hell et al., "Concerning the achromatic number of graphs", Journal of Combinatorial Theory, Series B 40, pp. 21 - 39, 1986.
[4] D.P. Geller, H.V. Kronk, "Further results on the achromatic number", Fundamenta Mathematicae 85, pp. 285-290, 1974.
[5] Jaeun Lee, Young-hee Shin, "The achromatic number of the union of cycles", Discrete Applied Mathematics 143, pp. 330-335, 2004.
[6] Jumming Xu , "Topological structure and analysis of interconnection networks", Kluwer Academic Publishers, 2001.
[7] D. Manlove, C. McDiarmid, "The complexity of harmonious coloring of trees", Discrete Applied Mathematics 57, pp. 133-144, 1995.
[8] Michael R. Garey, David S. Johnson, "Computers and Intractability: A Guide to the Theory of NP - completeness", W.H. Freeman, ISBN 0-7167-1045-5. A1.1, GT5, pp. 191, 1979.
Y. Roichman, "On the achromatic number of hypercubes", Journal of Combinatorial Theory, Series B 79 (2), pp. 177-182, 2000.
] M. Yannakakis, F. Gavril, "Edge dominating sets in graphs", SIAM Journal on Applied Mathematics 38, pp. 364-372, 1980.

